Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931600 | PMC |
http://dx.doi.org/10.1038/tp.2016.102 | DOI Listing |
J ECT
January 2025
From the Department of Psychiatry and Psychology, Center for Behavioral Health, Neurological Institute, Cleveland Clinic, Cleveland, OH.
Electroencephalogram (EEG) monitoring during electroconvulsive therapy (ECT) is commonly done using a 2-channel EEG in order to capture activity from both brain hemispheres, though many institutions may instead opt to utilize a 1-channel EEG, often for reasons of convenience. We present a novel case of asymmetric termination of EEG seizure activity during an acute course of right unilateral ECT, prompting a full neurological workup to investigate potential underlying structural or physiological causative factors. This case assists in informing the necessity of bilateral hemispheric EEG monitoring as well as highlights the importance of searching for undiagnosed or latent neurological dysfunction in certain clinical situations arising during ECT.
View Article and Find Full Text PDFJ ECT
January 2025
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia.
Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.
Methods: The study involved 27 TRD patients who underwent ECT.
J ECT
December 2024
Department of Mood and Anxiety, Institute of Mental Health, Singapore.
Background: Electroconvulsive therapy (ECT) is a highly effective treatment for schizophrenia and mood disorders; however, most evidence is derived from the adult population, with less evidence in adolescents. We sought to determine the use of ECT in adolescents in the Institute of Mental Health (IMH) and evaluate the treatment outcome.
Methods: We conducted a retrospective naturalistic analysis of ECT registry data of patients aged from 10 to 19 years from March 2017 to March 2023.
J ECT
December 2024
From the Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
Autoimmune encephalitis (AE) tends to manifest as a mixture of neuropsychiatric and somatic symptoms, either of which may predominate, and often shows a progressive clinical course sometimes leading to life-threatening conditions. Catatonic and psychotic syndromes, regardless of whether associated with dysautonomia, are common manifestations of AE, especially concerning the anti-NMDAR subtype. Several autoantibodies targeting different neuronal epitopes have been linked to specific clinical manifestations and their detection is embedded in some of the diagnostic criteria for AE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!