We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO(-)) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr03311c | DOI Listing |
Chem Sci
November 2024
University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy(TTF-TC)(HO)]·21HO (1), reveals a complex 2D topology, with hexanuclear Dy clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material.
View Article and Find Full Text PDFChemSusChem
October 2024
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.
Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs.
View Article and Find Full Text PDFDalton Trans
March 2024
Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
An enlarged version of the ubiquitous tetrathiafulvalene-tetrabenzoic acid is described, with 4,4'-biphenyl moieties as spacers between the coordination moieties and the electroactive core. The obtained rectangular ligand has a 14 × 22 Å size and is combined with Zn(II) under solvothermal conditions to yield a coordination polymer endowed with large cavities of . 15 × 11 Å/10 × 10 Å.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
Modulation of the ligands and coordination environment of metal-organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M (o-TTFOB)(bpm) (H O) (where M is Mn, Zn, and Cd; o-H TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2'-bipyrimidine), based on a new ligand o-H TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB , show higher reversible specific capacities of 1249 mAh g and 1288 mAh g under 200 mA g after full activation.
View Article and Find Full Text PDFJ Am Chem Soc
May 2022
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain.
Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, HTTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted , , and , all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas collapses during the activation process, and offer high stability evacuation, with a CO sorption capacity of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!