The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.12478 | DOI Listing |
Mar Drugs
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia.
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.
View Article and Find Full Text PDFNat Commun
November 2024
Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
Melanoma arising from pigment-producing melanocytes is the deadliest form of skin cancer. Extensive ultraviolet light exposure is a major cause of melanoma and individuals with low levels of melanin are at particular risk. Humans carrying gain-of-function polymorphisms in the melanosomal/endolysosomal two-pore cation channel TPC2 present with hypopigmentation, blond hair, and albinism.
View Article and Find Full Text PDFFront Immunol
June 2024
Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany.
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy.
View Article and Find Full Text PDFStructure
August 2024
Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK.
Two pore channels are lysosomal cation channels with crucial roles in tumor angiogenesis and viral release from endosomes. Inhibition of the two-pore channel 2 (TPC2) has emerged as potential therapeutic strategy for the treatment of cancers and viral infections, including Ebola and COVID-19. Here, we demonstrate that antagonist SG-094, a synthetic analog of the Chinese alkaloid medicine tetrandrine with increased potency and reduced toxicity, induces asymmetrical structural changes leading to a single binding pocket at only one intersubunit interface within the asymmetrical dimer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
The TWIK-related acid-sensitive K channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!