Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nm.4114 | DOI Listing |
Background: Selective corticolimbic vulnerability to tau pathology in Alzheimer's disease (AD) underlies clinicopathologic heterogeneity. The goal of this presentation will be to examine spatial heterogeneity of tangle distribution on a continuum through the utility of the corticolimbic index (CLix).
Method: We will discuss the development of CLix in the Florida Autopsied Multi-Ethnic (FLAME) cohort, which sought to collapse the spatial distribution of thioflavin-S tangle counts in AD (n=1361) to assign a continuum: hippocampal sparing with cortical predominance (<10), representative/typical (≥10 to <30), and limbic predominant with cortical sparing (≥30).
Alzheimers Dement
December 2024
cheonan chungmu hospital, cheonan si, Korea, Republic of (South).
Background: Vascular contributions to dementia & Alzheimer's disease are increasing recognized. Recent studies have suggested that blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction, including the early clinical stages of AD. Apolipoprotein E4(APOE4), the major AD susceptibility gene, leads to accelerated blood-brain barrier breakdown & degeneration of brain capillary pericyte that maintain blood-brain barrier integrity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, Beijing, China.
Background: Microglia play a critical role in the pathogenesis and development of Alzheimer's disease (AD). Selective small-molecule colony-stimulating factor 1 receptors (CSF1R) inhibitor, designed to deplete microglia, could be used to meliorate AD. This study aimed to investigate the effects and mechanisms of chimeric antigen receptor T (CAR-T) cells targeting CSF1R in 6-month-old APP/PS1 male mice.
View Article and Find Full Text PDFBackground: Oxylipins are oxygenated fatty acid (FA) metabolites that are important mediators of inflammation. Neuroinflammation is a hallmark of Alzheimer's disease (AD), and brains of AD patients contain more pro-inflammatory and less anti-inflammatory oxylipins compared to healthy controls. Free fatty acid receptor 4 (Ffar4) is a G-protein coupled receptor for medium and long-chain FAs, including, but not limited to, omega-3-polyunsaturated FAs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!