Natural products are important sources of chemical diversity leading to unique scaffolds that can be exploited in the discovery of new drug candidates or chemical probes. In this context, chemical and biological investigation of ferns and lycophytes occurring in Brazil is an approach adopted by our research group aiming at discovering bioactive molecules acting on neurodegeneration targets. In the present study, rosmarinic acid (RA) isolated from Blechnum brasiliense showed an in vitro multifunctional profile characterized by antioxidant effects, and monoamine oxidases (MAO-A and MAO-B) and catechol-O-methyl transferase (COMT) inhibition. RA showed antioxidant effects against hydroxyl (HO(•)) and nitric oxide (NO) radicals (IC50 of 29.4 and 140 μM, respectively), and inhibition of lipid peroxidation (IC50 of 19.6 μM). In addition, RA inhibited MAO-A, MAO-B and COMT enzymes with IC50 values of 50.1, 184.6 and 26.7 μM, respectively. The MAO-A modulation showed a non-time-dependent profile, suggesting a reversible mechanism of inhibition. Structural insights on RA interactions with MAO-A and COMT were investigated by molecular docking. Finally, RA (up to 5 mM) demonstrated no cytotoxicity on polymorphonuclear rat cells. Taken together, our results suggest that RA may be exploited as a template for the development of new antioxidant molecules possessing additional MAO and COMT inhibition effects to be further investigated on in vitro and in vivo models of neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2016.06.005DOI Listing

Publication Analysis

Top Keywords

multifunctional profile
8
rosmarinic acid
8
blechnum brasiliense
8
antioxidant effects
8
mao-a mao-b
8
comt inhibition
8
combining in vitro
4
in vitro silico
4
silico approaches
4
approaches evaluate
4

Similar Publications

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Multifunctional polymers are interesting substances for the formulation of drug molecules that cannot be administered in their pure form due to their pharmacokinetic profiles or side effects. Polymer-drug formulations can enhance pharmacological properties or create tissue specificity by encapsulating the drug into nanocontainers, or stabilizing nanoparticles for drug transport. We present the synthesis of multifunctional poly(2-ethyl-2-oxazoline--2-glyco-2-oxazoline)s containing two reactive end groups, and an additional hydrophobic anchor at one end of the molecule.

View Article and Find Full Text PDF

Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin.

Biotechnol Biofuels Bioprod

January 2025

Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.

Background: Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.

View Article and Find Full Text PDF

LAP1 Interactome Profiling Provides New Insights into LAP1's Physiological Functions.

Int J Mol Sci

December 2024

Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.

The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations causing LAP1 deficiency are extremely rare and pathogenic is indicative of its paramount importance to preserving human health, anticipating that LAP1 might have a multifaceted role in the cell.

View Article and Find Full Text PDF

Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!