Objective: Cerebrovascular reactivity can provide a continuously updated individualized target for management of cerebral perfusion pressure, termed optimal cerebral perfusion pressure. The objective of this project was to find a way of improving the optimal cerebral perfusion pressure methodology by introducing a new visualization method.
Data Sources: Four severe traumatic brain injury patients with intracranial pressure monitoring.
Data Extraction: Data were collected and pre-processed using ICM+ software.
Data Synthesis: Sequential optimal cerebral perfusion pressure curves were used to create a color-coded maps of autoregulation - cerebral perfusion pressure relationship evolution over time.
Conclusions: The visualization method addresses some of the main drawbacks of the original methodology and might bring the potential for its clinical application closer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CCM.0000000000001816 | DOI Listing |
Fluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.
Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.
View Article and Find Full Text PDFNeurology
February 2025
Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; and.
Neurology
February 2025
Department of Neurology, John Hunter Hospital, Newcastle, Australia.
Eur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!