Despite recent advances in improving titers for therapeutic proteins such as antibodies to the 10 g/L scale, these high yields can only be achieved in select mammalian hosts. Regardless of the host or product, strong promoters are required to obtain high levels of transgene expression. However, the promoters employed to drive this expression are rather limited in variety and are usually either viral-derived or screened empirically during vector design. To begin to move away from viral parts, we employed a more systematic approach to identify and design new synthetic promoters using endogenous elements. To do so, we established a workflow to design these elements by (1) analyzing the transcriptomics profile of a specific cell line under a desired, representative cell culture condition, (2) identifying key genetic motifs using bioinformatics that can be used to rationally construct synthetic promoters, (3) building synthetic promoters using conventional DNA synthesis and molecular biology techniques, and (4) evaluating the performance of these synthetic promoters using model proteins. The resulting promoters perform comparably to the hCMV IE promoter variants tested, but with endogenous components. During this design-build-test cycle we also investigated the underlying design rules for transcription factor binding site arrangement in synthetic promoters. Overall, this approach of using an "omics-guided" workflow for designing synthetic promoters facilitates the construction of high expression vectors for immediate use in current production hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.6b00075 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Transcriptional regulation based on transcription factors is an effective regulatory method widely used in microbial cell factories. Currently, few naturally transcriptional regulatory elements have been discovered from and applied. Moreover, the discovered elements cannot meet the demand for specific metabolic regulation of exogenous compounds due to the high background expression or narrow dynamic ranges.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA. Electronic address:
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus.
View Article and Find Full Text PDFPhysiol Plant
January 2025
KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain.
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Xianghu Laboratory, Hangzhou, 310027, China.
Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!