Background And Aims: Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided.

Methods: We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium

Key Results: Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium

Conclusions: Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970357PMC
http://dx.doi.org/10.1093/aob/mcw086DOI Listing

Publication Analysis

Top Keywords

sphagnum species
16
sphagnum
13
major clades
12
phylogenetic analyses
12
emerging model
8
model system
8
species differ
8
functional traits
8
relationships major
8
clades sphagnum
8

Similar Publications

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of species, along with mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies.

View Article and Find Full Text PDF

The Okuru skink (Oligosoma carinacauda sp. nov) of South Westland, New Zealand-simply elusive or extinct?

Zootaxa

November 2024

Honorary Research Associate; Museum of New Zealand Te Papa Tongarewa; Wellington; New Zealand.

Article Synopsis
  • A new species of skink, named Oligosoma carinacauda, has been identified from Okuru, South Westland, New Zealand, characterized by three supraocular scales and a unique keeled tail.
  • The only known specimen was collected in 2000 from sphagnum moss in a coastal dune area, but subsequent searches by herpetologists have not found any more individuals.
  • Given the threats to New Zealand lizards from habitat loss, invasive species, and climate change, there are significant worries about the survival of this newly identified skink.
View Article and Find Full Text PDF

Environmental fungi target thiol homeostasis to compete with Mycobacterium tuberculosis.

PLoS Biol

December 2024

Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America.

Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified 5 fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture.

View Article and Find Full Text PDF

The balance between photosynthetic carbon accumulation and respiratory loss in plants varies depending on temperature. This leads to a situation where the increased need for carbon is not met when a certain temperature threshold is reached. Over the last two decades, temperature thresholds in carbon metabolism in autotrophic systems have been widely studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!