We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR, the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb BamHI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnw149DOI Listing

Publication Analysis

Top Keywords

streptomycin production
16
production streptomyces
8
streptomyces griseus
8
streptomycin biosynthesis
8
coding sequences
8
streptomycin
7
abc transporter
4
transporter involved
4
involved control
4
control streptomycin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!