We show that a combinatorial library constructed by random pairwise assembly of low affinity binders can efficiently generate binders with increased affinity. Such a library based on the Sso7d scaffold, from a pool of low affinity binders subjected to random mutagenesis, contained putative high affinity clones for a model target (lysozyme) at higher frequency than a library of monovalent mutants generated by random mutagenesis alone. Increased binding affinity was due to intramolecular avidity generated by linking binders targeting nonoverlapping epitopes; individual binders of K ∼ 1.3 μM and 250 nM produced a bivalent binder with apparent K ∼ 2 nM. Furthermore, the bivalent protein retained thermal stability (T = 84.5 °C) and high recombinant expression yields in E. coli. Finally, when binders comprising the bivalent protein are fused to two of the three fragments of tripartite split-green fluorescent protein (GFP), target-dependent reconstitution of fluorescence occurs, thereby enabling a "mix-and-read" assay for target quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.6b00034DOI Listing

Publication Analysis

Top Keywords

affinity binders
12
pairwise assembly
8
high affinity
8
low affinity
8
random mutagenesis
8
bivalent protein
8
binders
7
affinity
6
combinatorial pairwise
4
assembly efficiently
4

Similar Publications

A lipidated peptide derived from the C-terminal tail of the vasopressin 2 receptor shows promise as a new β-arrestin inhibitor.

Pharmacol Res

January 2025

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:

β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

Generation of Rational Drug-like Molecular Structures Through a Multiple-Objective Reinforcement Learning Framework.

Molecules

December 2024

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.

As an appealing approach for discovering novel leads, the key advantage of de novo drug design lies in its ability to explore a much broader dimension of chemical space, without being confined to the knowledge of existing compounds. So far, many generative models have been described in the literature, which have completely redefined the concept of de novo drug design. However, many of them lack practical value for real-world drug discovery.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!