The aim of the present study was to prepare and evaluate microparticle formulation encapsulated with glycyrrhetinic acid (GA) based on bovine serum albumin (BSA). The drug-loaded nanoparticles were firstly formed by a simple desolvation method, and were further assembled into microparticles using zinc chloride and glutaraldehyde as crosslinkers. The obtained microparticles contained approximately 30% (w/w) drug and showed as spherical particles with a size of about 2 μm. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) analysis indicated that GA lost its crystallinity during the nano/microencapsulation process. In vitro dissolution study demonstrated a typical sustained-release pattern for 24 h with a burst of 28.1% at the first 30 min, which fitted well by Higuchi model. After intravenous administration into mice, the microparticle formulation remained a higher drug level than the solution formulation in blood and liver for more than 18 h. These results suggested the potential benefit of using the prepared albumin microparticles as a promising vector for enhanced liver delivery of poorly water-soluble drug.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2016.1193024DOI Listing

Publication Analysis

Top Keywords

enhanced liver
8
liver delivery
8
glycyrrhetinic acid
8
microparticle formulation
8
fabrication evaluation
4
evaluation nanoparticle-assembled
4
nanoparticle-assembled bsa
4
microparticles
4
bsa microparticles
4
microparticles enhanced
4

Similar Publications

Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.

View Article and Find Full Text PDF

Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).

Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.

View Article and Find Full Text PDF

Background: Chronic and excessive alcohol consumption is the leading cause of death due to chronic liver disease. Alcohol-related liver disease (ALD) encompasses a broad spectrum of clinical and pathological features, ranging from asymptomatic and reversible pathologies to hepatocellular carcinoma (HCC), a highly prevalent and deadly liver cancer. Indeed, alcohol consumption is one of the main worldwide etiologies of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!