Background: Glioma is one of the most common and aggressive primary malignant tumor in the brain. Accumulating evidences indicated that aberrantly expressed non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), contribute to tumorigenesis. However, potential mechanisms between lncRNAs and miRNAs in glioma remain largely unknown.

Methods: Long non-coding RNA activated by TGF-β (LncRNA-ATB) expression in glioma tissues and cells was quantified by quantitative reverse transcription-PCR. Glioma cell lines U251 and A172 were transfected with sh-ATB, miR-200a mimics, miR-200a inhibitors, after we assayed the cell phenotype and expression of the relevant molecules. Dual-luciferase reporter assay, RIP and a xenograft mouse model were used to examine the expression of sh-ATB and its target gene miR-200a.

Results: ATB is abnormally up-regulated both in glioma tissues and cell lines compared with normal brain tissues, and glioma patients with high ATB expression had shorter overall survival time. Knockdown of ATB significantly inhibits glioma malignancy, including cell proliferation, colony formation, migration, invasion in vitro, and the xenograft tumor formation in vivo. In addition, ATB was confirmed to target miR-200a, and miR-200a inhibition reversed the malignant characteristics of ATB knockdown on glioma cells. In particular, ATB may act as a ceRNA, effectively becoming a sink for miR-200a, thereby modulating the derepression of TGF-β2.

Conclusions: Our findings suggest that ATB plays an oncogenic role of glioma cells by inhibiting miR-200a and facilitating TGF-β2 in glioma, thereby may represent a potential therapeutic target for the treatment of human glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895888PMC
http://dx.doi.org/10.1186/s13046-016-0367-2DOI Listing

Publication Analysis

Top Keywords

long non-coding
12
glioma
12
non-coding rna
8
atb
8
glioma malignancy
8
non-coding rnas
8
glioma tissues
8
cell lines
8
glioma cells
8
mir-200a
7

Similar Publications

Analysis of key lncRNA related to Parkinson's disease based on gene co-expression weight networks.

Neurosciences (Riyadh)

January 2025

From the School of Clinical Medicine (Liang, Luo, Jia), Shandong Second Medical University, Weifang, from the Department of Neurology (Liang, Zhao, Lin, Li, Luo, Jia) , Beijing Shijingshan Hospital, Shijingshan Teaching Hospital of Capital Medical University, Beijing, and from the Department of Neurology (Li), Affiliated Hospital of Weifang Medical University, Weifang, China.

Objectives: To identify a key Long chain non-coding RNAs (lncRNAs) related to PD and provide a new perspective on the role of LncRNAs in Parkinson's disease (PD) pathophysiology.

Methods: Our study involved analyzing gene chips from the substantia nigra and white blood cells, both normal and PD-inclusive, in the Gene Expression Omnibus (GEO) database, utilizing a weighted gene co-expression network analysis (WGCNA). The technique of WGCNA facilitated the examination of differentially expressed genes (DEGs) in the substantia nigra and the white blood cells of individuals with PD.

View Article and Find Full Text PDF

Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications.

Pharmacol Res

January 2025

Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China. Electronic address:

Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies.

View Article and Find Full Text PDF

LncRNA-AC006129.1 Aggravates kidney hypoxia-ischemia injury by promoting CXCL2-dependent inflammatory response.

Int Immunopharmacol

January 2025

Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:

Purpose: Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of miR-483-5p in regulating the overexpression of IGF2 and H19, which are linked to hepatocellular carcinoma (HCC).
  • miR-483-5p enhances IGF2 and H19 expression by binding to their enhancer, activating transcription, and promoting new interactions between the enhancer and gene promoters through chromatin loops.
  • The research highlights that MED1 is crucial in this process, influencing both chromatin structure and the aggressive behavior of HCC cells, indicating potential targets for therapeutic interventions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!