Molecular dynamics simulations are utilized to investigate the interactions between the skin cancer drug 5-fluorouracil (5FU) and peptide-based dendritic carrier systems. We find that these drug-carrier interactions do not conform to the traditional picture of long-time retention of the drug within a hydrophobic core of the dendrimer carrier. Rather, 5FU, which is moderately soluble in its own right, experiences weak, transient chattering interactions all over the dendrimer, mediated through multiple short-lived hydrogen bonding and close contact events. We find that charge on the periphery of the dendrimer actually has a negative effect on the frequency of drug-carrier interactions due to a counterion screening effect that has not previously been observed. However, charge is nevertheless an important feature since neutral dendrimers are shown to have a significant mutual attraction that can lead to clustering or agglomeration. This clustering is prevented due to charge repulsion for the titrated dendrimers, such that they remain independent in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b00533DOI Listing

Publication Analysis

Top Keywords

drug-carrier interactions
8
dynamical interactions
4
interactions 5-fluorouracil
4
5-fluorouracil drug
4
drug dendritic
4
dendritic peptide
4
peptide vectors
4
vectors impact
4
dendrimer
4
impact dendrimer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!