Chlorambucil effectively induces deletion mutations in mouse germ cells.

Proc Natl Acad Sci U S A

Biology Division, Oak Ridge National Laboratory, TN 37831-8077.

Published: May 1989

The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to date in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with approximately 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germ-line mutations at highest frequencies, chlorambucil may be the mutagen of choice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC287208PMC
http://dx.doi.org/10.1073/pnas.86.10.3704DOI Listing

Publication Analysis

Top Keywords

deletion mutations
8
germ-line mutations
8
deletions structural
8
structural changes
8
post-stem-cell stages
8
mutations
7
chlorambucil
6
chlorambucil effectively
4
effectively induces
4
induces deletion
4

Similar Publications

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Genome-Wide Approach Identifies Natural Large-Fragment Deletion in ASFV Strains Circulating in Italy During 2023.

Pathogens

January 2025

National Reference Laboratory (NRL) for Swine Fever, Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.

African swine fever (ASF), characterized by high mortality rates in infected animals, remains a significant global veterinary and economic concern, due to the widespread distribution of ASF virus (ASFV) genotype II across five continents. In this study, ASFV strains collected in Italy during 2022-2023 from two geographical clusters, North-West (Alessandria) and Calabria, were fully sequenced. In addition, an in vivo experiment in pigs was performed.

View Article and Find Full Text PDF

Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin.

View Article and Find Full Text PDF

Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.

View Article and Find Full Text PDF

22q11.2 is a region prone to chromosomal rearrangements due to the presence of eight large blocks of low-copy repeats (LCR22s). The 3 Mb 22q11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!