The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2016.06.001DOI Listing

Publication Analysis

Top Keywords

antioxidants encapsulated
12
liposomes antioxidants
8
antioxidants reduces
8
reduces pulmonary
8
experimental model
8
model sepsis
8
encapsulated liposomes
8
rats subjected
8
subjected sepsis
8
lipid peroxidation
8

Similar Publications

Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.

View Article and Find Full Text PDF

The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.

View Article and Find Full Text PDF

In this study, emulsions co-encapsulated with Bifidobacterium bifidum (B. bifidum) and quercetin (BQE) were prepared, and the encapsulation efficiency, antioxidant properties, storage stability, and digestive stability of emulsions containing different concentrations of quercetin were investigated. The results indicate that the prepared emulsion possesses excellent encapsulation efficiency and stability at quercetin concentration of 500 μg/mL.

View Article and Find Full Text PDF

Curcumin (Cur) is a great candidate for antioxidant applications; however, due to its low solubility and poor bioavailability, it remains only hardly employed as a therapeutic agent. Moreover, curcumin is very unstable and tends to degrade quickly. Metal-organic frameworks (MOFs) have gained great attention in the field of drug loading due to their diversity and tunability, so they are seen as great candidates for hosting curcumin.

View Article and Find Full Text PDF

Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.

Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!