Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b06312 | DOI Listing |
Sci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Additives leached from tire particles (TPs) after entering the marine environment inevitably interact with marine life. Marine heatwaves (MHWs) would play a more destructive role than ocean warming during the interaction of pollutants and marine life. To evaluate the potential risks of TPs leachate under MHWs, the physiological and nutrient metabolic endpoints of microalgae were observed for 7 days while being exposed to TPs leachate at current or predicted concentrations under MHWs.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
Methane (CH) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH emissions and their influencing mechanisms.
View Article and Find Full Text PDFPlant Sci
December 2024
Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India. Electronic address:
Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!