Opisthorchis viverrini (Ov) is one of the most important human parasitic diseases in Southeast Asia. Although the concept of connectivity is widely used to comprehend disease dispersal, knowledge of the influences of landscape connectivity on Ov transmission is still rudimentary. This study aimed to investigate the role of landscape connectivity in Ov transmission between the human and the first intermediate snail hosts. Fieldwork was conducted in three villages respectively in Kamalasai District, Kalasin Province, Phu Wiang District, Khon Kaen Province, and Nong Saeng District, Udon Thani Province. Bithynia snails were collected to examine parasitic infections, water samples were analyzed for fecal contamination, and locations of septic tanks and connections between habitat patches with observable water movement were surveyed. Euclidean distance, topological link and distance, and graph measures were employed to quantify the connectivity between human and snail habitats. The findings showed that snail patches with higher fecal contents were generally located nearer to septic tanks. The statistically significant results for the topological link and distance measures highlighted the importance of water in functionally facilitating Ov transmission. Graph measures revealed differences in landscape connectivity across the sites. The site with the largest landscape component size and the most mutually connected snail patches coincided with the presence of Ov parasite, reinforcing its higher risk for human to snail transmission. The site with the dissected landscape structure potentially limited the transmission. This study underscored the potential effect of landscape connectivity on Ov transmission, contributing to the understanding of the spatial variation of Ov infection risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parint.2016.06.002 | DOI Listing |
Nucleic Acids Res
December 2024
Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA.
Exons within transcripts are traditionally classified as first, internal or last exons, each governed by different regulatory mechanisms. We recently described the widespread usage of 'hybrid' exons that serve as terminal or internal exons in different transcripts. Here, we employ an interpretable deep learning pipeline to dissect the sequence features governing the co-regulation of transcription initiation and splicing in hybrid exons.
View Article and Find Full Text PDFConserv Biol
December 2024
California Division, The Nature Conservancy, California, USA.
Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change.
View Article and Find Full Text PDFJCI Insight
December 2024
Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation".
View Article and Find Full Text PDFEcol Lett
December 2024
Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden.
Evolutionary adaptation occurs when individuals vary in access to fitness-relevant resources and these differences in 'material wealth' are heritable. It is typically assumed that the inheritance of material wealth reflects heritable variation in the phenotypic abilities needed to acquire material wealth. We scrutinise this assumption by investigating additional mechanisms underlying the inheritance of material wealth in collared flycatchers.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, Zhejiang, China.
In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!