Herein, we report a facile fabrication of a polymer (azobenzene and α-cyclodextrin-functionalized hyaluronic acid) and gold nanobipyramids (AuNBs) conjugated mesoporous silica nanoparticles (MSNs) to be used as an injectable drug delivery system for sustained cancer treatment. Because of the specific affinity between the hyaluronic acid (HA) on MSNs and the CD44 antigen overexpressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposite material then exploits thermoresponsive interactions between α-cyclodextrin and azobenzene, and the photothermal properties of gold nanobipyramids, to in situ self-assemble into a hydrogel under near-infrared (NIR) radiation. Upon gelation, the drug (doxorubicin)-loaded MSNs carriers were enclosed in the HA network of the hydrogel, whereas further degradation of the HA in the hydrogel due to the upregulation of hyaluronidase (HAase) around the tumor tissue will result in the release of MSNs from the hydrogel, which can then be taken by tumor cells and deliver their drug to the cell nuclei. This design is able to provide a microenvironment with rich anticancer drugs in, and around, the tumor tissue for time periods long enough to prevent the recrudescence of the disease. The extra efficacy that this strategy affords builds upon the capabilities of conventional therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b02562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!