Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Protein-rich beverages are widely used clinically to preserve muscle protein and improve physical performance. Beverages with high contents of leucine or its keto-metabolite β-hydroxy-β-methylbutyrate (HMB) are especially anabolic in muscle, but it is uncertain whether this also applies to catabolic conditions such as fasting and whether common or separate intracellular signaling cascades are involved.
Objective: To compare a specific leucine-rich whey protein beverage (LWH) with isocaloric carbohydrate- (CHO), soy protein (SOY), and soy protein +3 g HMB (HMB) during fasting-induced catabolic conditions.
Design: Eight healthy lean male subjects underwent four interventions (LWH, CHO, SOY, and HMB) using a randomized crossover design. Each trial included a 36 h fast and consisted of a 3 h basal fasting period and a 4 h 'sipping' period.
Results: Forearm net balances of phenylalanine (NB, measure of net protein loss) improved for all groups (p < 0.05), but more prominently so for LWH and HMB compared with SOY (p < 0.05). Muscle protein phosphorylation of mammalian target of rapamycin (mTOR) and its downstream targets eukaryotic translation factor 4E-binding protein 1 (4EBP1) and ribosomal S6 kinase 1 (S6) were distinctly increased during LWH consumption (p < 0.05). The ratio between autophagy protein microtubule-associated protein 1 light chain-3β II and I (LC3II/LC3I, a measure of autophagy activity) was decreased during LWH and SOY intake compared with the fasting period (p < 0.05).
Conclusion: LWH and HMB have superior anabolic effects on muscle protein kinetics after 36 h of fasting, and LWH distinctly activates the mTOR pathway. These novel findings suggest that leucine-rich whey protein and/or HMB are specifically beneficial during fasting-induced catabolic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clnu.2016.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!