The mechanisms of proangiogenic activity of multipotent stromal cells from human umbilical cord were analyzed in vitro. The absence of secreted forms of proangiogenic growth factor VEGF-A in the culture medium conditioned by umbilical cord-derived multipotent stromal cells was shown by ELISA. However, the possibility of paracrine stimulation of cell proliferation, mobility, and directed migration of endothelial EA.hy926 cells was demonstrated by using MTT test, Transwell system, and monolayer wound modeling. The capacity of multipotent stromal cells to acquire the phenotype of endothelium-like cells was analyzed using differentiation media of three types. It was found that VEGF-A is an essential but not sufficient inductor of differentiation of umbilical cord-derived multipotent stromal cells into CD31+ cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-016-3365-7DOI Listing

Publication Analysis

Top Keywords

multipotent stromal
20
stromal cells
20
cells
8
umbilical cord
8
umbilical cord-derived
8
cord-derived multipotent
8
multipotent
5
stromal
5
angiogenic potential
4
potential multipotent
4

Similar Publications

Bone marrow stromal cells (BMSCs) serve as a valuable reservoir of multipotent stem cells important in the regulation of bone homeostasis and energy metabolism. Here, we present a protocol for isolating human BMSCs (hBMSCs) and characterizing their cellular metabolism related to hBMSC functional properties. We describe steps for bioenergetics, cell senescence, and production of reactive oxygen species (ROS), together with description of the data analysis.

View Article and Find Full Text PDF

Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift.

Bioeng Transl Med

January 2025

Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.

Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.

View Article and Find Full Text PDF

In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors.

View Article and Find Full Text PDF

The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!