Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88.

Stem Cell Reports

Department of Medical and Molecular Genetics, School of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Herman B Wells Center for Pediatric Research, School of Medicine, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN 46202, USA. Electronic address:

Published: June 2016

Toll-like receptor 4 (TLR4) plays a central role in host responses to bacterial infection, but the precise mechanism(s) by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC) functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911503PMC
http://dx.doi.org/10.1016/j.stemcr.2016.05.002DOI Listing

Publication Analysis

Top Keywords

myd88 trif
12
hematopoietic stem
8
stem cell
8
mechanisms downstream
8
trif
5
myd88
5
sepsis
4
sepsis induces
4
induces hematopoietic
4
cell exhaustion
4

Similar Publications

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation.

View Article and Find Full Text PDF

Genome-wide screen based on 2DG activated NLRP3 inflammasome reveals the priming signal of TLR2/4 to IKKβ but not IKKα.

Int Immunopharmacol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China. Electronic address:

NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variations in the TLR4 gene affect immune responses to pertussis toxin in different mouse strains (ICR, NIH, BALB/c).
  • Researchers discovered three specific mutations in the TLR4 gene and noted how these variations influence cytokine production in response to stimulation.
  • The findings aim to improve the consistency of vaccine evaluations across different mouse models, potentially enhancing vaccine development by standardizing immune response assessments.
View Article and Find Full Text PDF

Non-ionic surfactant vesicles exert anti-inflammatory effects through inhibition of NFκB.

J Inflamm (Lond)

November 2024

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.

Inflammation can be an unwanted consequence or cause of debilitating diseases of infectious and non-infectious aetiologies. Current anti-inflammatory medications have several deficiencies including lack of specificity and undesirable side effects. Herein, the potential of non-ionic surfactant vesicles (NISV) comprised of monopalmityol glycerol, dicetyl phosphate and cholesterol) as an anti-inflammatory drug and their mode of action is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!