Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated the skin after 7 h at a ten-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5% of applied MTX before skin saturation, and increased afterwards up to 8.0% at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section. In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.
Download full-text PDF |
Source |
---|
J R Coll Physicians Edinb
January 2025
Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India.
Low-dose methotrexate (LD-MTX) is the anchor drug used in the treatment of various rheumatological illnesses. There are a lot of misconceptions associated with the long-term use of MTX in the minds of practitioners. The origin of most of these myths stems from the ill effects associated with high-dose MTX used in cancer chemotherapy.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The First Affiliated Hospital, Sun Yat-sen Univesrity, Guangzhou, Guangdong, China.
Background: The objectives of the study is to assess the clinical utility of the MemTrax Memory Test for detection of cognitive impairment in patients with PD.
Method: The MemTrax and Montreal Cognitive Assessment (MoCA) were administered to 61 healthy controls (HC), 102 PD patients with normal cognition (PD-N), 74 PD patients with mild cognitive impairment (PD-MCI) and 52 PD patients with dementia (PD-D). The MemTrax performance, MTx-%C, MTx-RT and MTx-Cp, and the MoCA scores were comparatively analyzed.
CPT Pharmacometrics Syst Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Rheumatoid arthritis (RA) is a major public health concern, which can cause serious outcomes. Low-dose methotrexate (MTX) is a cornerstone in RA treatment, but there is significant heterogeneity in clinical response. To evaluate underlying sources of pharmacokinetic variability and clinical response of MTX, a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed using PK-sim and Mobi (version 11.
View Article and Find Full Text PDFJ Obstet Gynaecol
December 2025
Department of Obstetrics and Gynecology, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.
Background: Ectopic pregnancies represent a potentially life-threatening medical emergency, with 95% being tubal. This meta-analysis aimed to identify early predictors for single-dose methotrexate (MTX) treatment failure in tubal pregnancies.
Methods: A literature search was conducted across several databases from their inception to December 2023, with references in the selected studies manually reviewed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!