The propeller DNA conformation of poly(dA).poly(dT).

Nucleic Acids Res

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.

Published: April 1989

Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A number of molecular models have been used to describe these structures obtained from fiber X-ray diffraction data. The recent solutions of single crystal DNA dodecamer structures with segments of oligo-A.oligo-T have revealed the presence of a high propeller twist in the AT regions which is stabilized by the formation of bifurcated (three-center) hydrogen bonds on the floor of the major groove, involving the N6 amino group of adenine hydrogen bonding to two O4 atoms of adjacent thymine residues on the opposite strand. Here we show that it is possible to incorporate the features of the single crystal analysis, specifically high propeller twist, bifurcated hydrogen bonds, and a narrow minor groove, as well as the close interstrand NMR signal between adenine HC2 and ribose HC1' of the opposite strand, into a model that is fully compatible with the diffraction data obtained from poly(dA).poly(dT).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC317725PMC
http://dx.doi.org/10.1093/nar/17.8.3229DOI Listing

Publication Analysis

Top Keywords

diffraction data
8
single crystal
8
high propeller
8
propeller twist
8
hydrogen bonds
8
opposite strand
8
propeller dna
4
dna conformation
4
conformation polydapolydt
4
polydapolydt physical
4

Similar Publications

The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.

View Article and Find Full Text PDF

In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.

View Article and Find Full Text PDF

This paper explores a multi-directional (multiple directional) shearing synchronous polarization phase-shifting interferometer that utilizes a birefringent crystal displacer. This design effectively mitigates nonlinear issues and environmental influences commonly encountered in synchronous phase-shifting interferometry. Additionally, it enables the acquisition of shear wavefront information from multiple directions.

View Article and Find Full Text PDF

Broadband coherent Fourier scatterometry: A two-pulse approach.

Rev Sci Instrum

January 2025

Optics Research Group, Imaging Physics Department, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands.

We demonstrate a broadband implementation of coherent Fourier scatterometry (CFS) using a supercontinuum source. Spectral information can be resolved by splitting the incident field into two pulses with a variable delay and interfering them at the detector after interaction with the sample, bearing similarities with Fourier-transform spectroscopy. By varying the time delay between the pulses, a collection of diffraction patterns is captured in the Fourier plane, thereby obtaining an interferogram for every camera pixel.

View Article and Find Full Text PDF

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!