Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As per modern electrical grid rules, Wind Turbine needs to operate continually even in presence severe grid faults as Low Voltage Ride Through (LVRT). Hence, a new LVRT Fault Detection and Identification (FDI) procedure has been developed to take the appropriate decision in order to develop the convenient control strategy. To obtain much better decision and enhanced FDI during grid fault, the proposed procedure is based on voltage indicators analysis using a new Artificial Neural Network architecture (ANN). In fact, two features are extracted (the amplitude and the angle phase). It is divided into two steps. The first is fault indicators generation and the second is indicators analysis for fault diagnosis. The first step is composed of six ANNs which are dedicated to describe the three phases of the grid (three amplitudes and three angle phases). Regarding to the second step, it is composed of a single ANN which analysis the indicators and generates a decision signal that describes the function mode (healthy or faulty). On other hand, the decision signal identifies the fault type. It allows distinguishing between the four faulty types. The diagnosis procedure is tested in simulation and experimental prototype. The obtained results confirm and approve its efficiency, rapidity, robustness and immunity to the noise and unknown inputs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2016.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!