New 5,5-diethylbarbiturate (barb) complexes of Ni(ii), Cu(ii) and Zn(ii) with 1,10-phenanthroline (phen) and 2,2'-dipyridylamine (dpya), namely [Ni(phen-κN,N')3]Cl(barb)·7H2O (), [Cu(barb-κN)(barb-κ(2)N,O)(phen-κN,N')]·H2O (), [Cu(barb-κN)2(phen-κN,N')] (), [Zn(barb-κN)2(phen-κN,N')]·H2O (), [Ni(barb-κ(2)N,O)(dpya-κN,N')2]Cl·2H2O (), [Cu(barb-κ(2)N,O)2(dpya-κN,N')]·2H2O () and [Zn(barb-κN)2(dpya-κN,N')] (), were synthesized and characterized by elemental analysis, UV-vis, FT-IR and ESI-MS. The structures of the complexes were determined by X-ray crystallography. Notably, and were fluorescent in MeOH : H2O at rt. The interaction of the complexes with fish sperm (FS) DNA and bovine serum albumin (BSA) was investigated in detail by various techniques. The complexes exhibited groove binding along with a partial intercalative interaction with DNA, while the hydrogen bonding and hydrophobic interactions played a major role in binding to BSA. It is noteworthy that exhibited the highest affinity towards DNA and BSA. Enzyme inhibition assay showed that show a preference for both A/T and G/C rich sequences in pUC19 DNA, while and display a binding specificity to the G/C and A/T rich regions, respectively. These findings were further supported by molecular docking. The cellular uptake studies suggested that was deposited mostly in the membrane fraction of the cells. Among the present complexes, exhibited a very strong cytotoxic effect on A549, MCF-7, HT-29 and DU-145 cancer cells, being more potent than cisplatin. Moreover, induces cell death through the apoptotic mode obtained by flow cytometry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt01726fDOI Listing

Publication Analysis

Top Keywords

molecular docking
8
docking cellular
8
cellular uptake
8
cell death
8
complexes exhibited
8
complexes
6
niii/cuii/znii 55-diethylbarbiturate
4
55-diethylbarbiturate complexes
4
complexes 110-phenanthroline
4
110-phenanthroline 22'-dipyridylamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!