Melatonin protects female rats against steatosis and liver oxidative stress induced by oestrogen deficiency.

Life Sci

Department of Biochemistry, Laboratory of Biological Oxidations, Universidade of Maringá, Maringá 87020900, Brazil; Department of Biochemistry, Laboratory of Experimental Steatosis, Universidade of Maringá, Maringá 87020900, Brazil. Electronic address:

Published: July 2016

Aims: Melatonin has been shown to protect cells against oxidative and inflammatory damage via endocrine, paracrine and autocrine actions. Postmenopausal condition is associated with a high incidence of many features of metabolic syndrome including obesity, steatosis and liver oxidative injuries. The aim of this work was to investigate whether treatment with melatonin improves metabolic disturbances associated with oestrogen deficiency in ovariectomised (OVX) rats.

Main Methods: OVX and control (CON) female rats were treated with melatonin (10mg/kg×day for 3weeks, p.o.). Body weight gain, adiposity index, plasma biochemical parameters, liver lipid content, hepatic mitochondrial respiration, fatty acid oxidation and mitochondrial H2O2 generation and the activity of the most important enzymatic and non-enzymatic reactive oxygen species (ROS) scavenger systems were measured.

Key Findings: In OVX rats, melatonin suppressed lipid accumulation and cellular oxidative stress in the liver. There was a reduction in the levels of carbonylated proteins in the mitochondria and cytosol, reduction in the malondialdehyde contents in the liver homogenates, stimulation of cytosolic glutathione peroxidase and glutathione reductase activities and restoration of reduced glutathione contents to normal levels.

Significance: Exogenous melatonin protects the liver of OVX rats against steatosis and cellular oxidative stress, possibly via activation of antioxidant enzymes related to glutathione metabolism and by a direct radical scavenging activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2016.05.044DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
melatonin protects
8
female rats
8
rats steatosis
8
steatosis liver
8
liver oxidative
8
oestrogen deficiency
8
ovx rats
8
cellular oxidative
8
melatonin
6

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!