N-terminal region of human ameloblastin synthetic peptide promotes bone formation.

Odontology

Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Published: January 2017

The aim of this study was to examine the effect of 16 amino acids of the N-terminal region of human ameloblastin (16N-AMBN) synthetic peptide, on the proliferation and differentiation of MC3T3-E1 cells and bone regeneration. While 16N-AMBN did not affect the proliferation, it induced mRNA expression of type I collagen, alkaline phosphatase (ALP), bone sialoprotein, and osteocalcin. 16N-AMBN also stimulated ALP activity and promoted mineralized nodule formation. On the other hand, these activities were inhibited by anti-16N-AMBN antibody. Treatment of rat calvarial bone defects with 16N-AMBN resulted in almost complete healing compared to that of the control treatments. These findings suggest that 16N-AMBN may be applicable for regeneration therapy of bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10266-016-0243-8DOI Listing

Publication Analysis

Top Keywords

n-terminal region
8
region human
8
human ameloblastin
8
synthetic peptide
8
bone defects
8
bone
5
16n-ambn
5
ameloblastin synthetic
4
peptide promotes
4
promotes bone
4

Similar Publications

Background: Emerging evidence support the notion that loss of splicing repression by TDP-43, an RNA binding protein that was first implicated in ALS-FTD, underlies their pathogenesis. Previously, we showed that delivery of an AAV9 vector at early postnatal day expressing a fusion protein, termed CTR comprised of the N-terminal region of TDP-43 and an unrelated splicing repressor termed RAVER1 complemented the loss of TDP-43 in mice lacking TDP-43 in spinal motor neurons (ChAT-IRES-Cre;tardbp mice). To translate this potential therapeutic strategy to the clinic, it will be important to demonstrate benefit of such AAV delivery of CTR to motor neurons in adult mice.

View Article and Find Full Text PDF

Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.

View Article and Find Full Text PDF

Background: The development of new innovative treatments to prevent and ameliorate Alzheimer's disease (AD) requires knowledge of molecular mechanisms that are critical to neuronal health. The receptor TREM2 is part of a signaling complex that modulates inflammatory responses, phagocytosis and cell survival in microglia- resident immune cells in the brain that play a critical role in clearing misfolded aggregates such as amyloid beta (Aβ). In recent years, TREM2 has emerged as a promising drug target for AD.

View Article and Find Full Text PDF

Genetic studies in Escherichia coli have implicated the unphosphorylated version of PtsN (unphospho-PtsN), the terminal phospho-acceptor of the PtsP-PtsO-PtsN phosphorelay, as a negative regulator of potassium (K) efflux mediated by YcgO. YcgO is a protein belonging to the CPA1 family of monovalent cation/proton antiporters. Here we show that in vivo, YcgO comprises an approximately 383 amino acid N-terminal transmembrane domain (TMD) and a 195 amino acid C-terminal cytoplasmic region (CTR).

View Article and Find Full Text PDF

The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions.

DNA Repair (Amst)

December 2024

Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:

Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!