A novel and pragmatic method was developed to detect the concentration of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles (MNPs) by surface-enhanced Raman scattering (SERS). The as-prepared bifunctional nanocomposites can be used to simultaneously purify target molecules using external magnetic field and produce Raman fingerprint spectrum with trace level of target molecules. In acidic media, 4-aminothiophenol (4-ATP) molecules conjugated on Fe3O4@SiO2/Au MNPs were triggered by nitrite ions to form azo bonds, resulting in three new marker peaks on the SERS spectrum. Under optimized conditions, the detection limit based on the three marker peaks were 15.63, 13.69, and 17.77μM, which was much lower than the maximum NO2(-) concentration of 1.0mgL(-1) (71.4μM) allowed in drinking water as defined by U.S. Environmental Protection Agency (EPA). The specificity of this proposed method to detect nitrite ions was demonstrated using common ions as competitors. In addition, the SERS-based technique was successfully employed to detect nitrite ions in pond water, a synthetic urine solution, and pickle brine. Considering its good sensitivity and selectivity, the detection method is well suited for the detection of nitrite ions in real samples without pretreatment steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.05.068 | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan. Electronic address:
Background: Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.
View Article and Find Full Text PDFACS ES T Water
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
University of Ibadan, College of Medicine, Department of Physiology, Ibadan, Nigeria.
Objective: Submandibular salivary gland inflammation has been suggested as one of the mechanisms underlying impaired salivary secretion associated with sleep deprivation (SD). However, whether the salivary inflammatory response occurs to the same extent in paradoxical sleep deprivation with or without sleep recovery remains unknown. This study evaluated the extent to which inflammation influences salivary impairments associated with paradoxical sleep deprivation with or without sleep recovery.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!