This paper reports the HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype polymorphism in a population of 432 healthy individuals from Albania. First-field HLA genotyping was performed by polymerase chain reaction sequence-specific priming and/or oligonucleotide methods. The data were analyzed statistically using gene counting and Arlequin software packages. No deviation from Hardy Weinberg Equilibrium was detected at any of the loci studied. The HLA genotypic data of the population sample reported here are available publicly in the Allele Frequencies Net Database and they can serve as a reference database for further HLA-based population genetics studies including the Albanian population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humimm.2016.06.001DOI Listing

Publication Analysis

Top Keywords

hla-a -drb1
8
-drb1 -dqb1
8
-dqb1 allele
8
allele haplotype
8
population 432
8
432 healthy
8
individuals albania
8
population
5
haplotype frequencies
4
frequencies population
4

Similar Publications

Unrelated bone marrow transplantation (BMT) is a curative treatment for hematological malignancies. While HLA mismatch is a recognized risk factor in unrelated BMT, the significance of non-HLA single nucleotide polymorphisms (SNPs) remains uncertain. Cytokines play key roles in several aspects of unrelated BMT.

View Article and Find Full Text PDF

Many factors contribute to the development and the progression of Multiple Sclerosis (MS), including Human Leukocyte Antigen (HLA) molecules. Some of them are considered as predisposing, like DRB1*15, DRB1*13, DRB1*03, DRB1*04, DQB1*06, DQB1*02, while HLA A2, HLA B44, DRB1*11, and DRB1*12 are rather considered as protective. Data about such associations in the Moroccan population remain unknown.

View Article and Find Full Text PDF

T cells targeting a KRAS mutation can induce durable tumor regression in some patients with metastatic epithelial cancer. It is unknown whether T cells targeting mutant KRAS that are capable of killing tumor cells can be identified from peripheral blood of patients with pancreatic cancer. We developed an in vitro stimulation approach and identified HLA-A*11:01-restricted KRAS G12V-reactive CD8+ T cells and HLA-DRB1*15:01-restricted KRAS G12V-reactive CD4+ T cells from peripheral blood of 2 out of 6 HLA-A*11:01-positive patients with pancreatic cancer whose tumors expressed KRAS G12V.

View Article and Find Full Text PDF

The effect of HLA genotype on disease onset and severity in CTLA-4 insufficiency.

Front Immunol

January 2025

Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.

View Article and Find Full Text PDF

Background: Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that leads to lifelong infection and multiple diseases, including HAM/TSP and ATLL. Despite extensive research, the exact pathophysiology of HTLV infection and its related diseases is enigmatic. In this study, we aimed to review and analyze the effect of different HLA alleles as protective or predisposing factors in HTLV-1 infection and its progression to related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!