Genomic selection for wheat traits and trait stability.

Theor Appl Genet

Ohio Agriculture Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.

Published: September 2016

Based on the estimates of accuracy, genomic selection would be useful for selecting for improved trait values and trait stability for agronomic and quality traits in wheat. Trait values and trait stability estimated by two methods were generally independent indicating a breeder could select for both simultaneously. Genomic selection (GS) is a new marker-assisted selection tool for breeders to achieve higher genetic gain faster and cheaper. Breeders face challenges posed by genotype by environment interaction (GEI) pattern and selecting for trait stability. Obtaining trait stability is costly, as it requires data from multiple environments. There are few studies that evaluate the efficacy of GS for predicting trait stability. A soft winter wheat population of 273 lines was genotyped with 90 K single nucleotide polymorphism markers and phenotyped for four agronomic and seven quality traits. Additive main effect and multiplicative interaction (AMMI) model and  Eberhart and Russell regression (ERR) were used to estimate trait stability. Significant GEI variation was observed and stable lines were identified for all traits in this study. The accuracy of GS ranged from 0.33 to 0.67 for most traits and trait stability. Accuracy of trait stability was greater than trait itself for yield (0.44 using AMMI versus 0.33) and heading date (0.65 using ERR versus 0.56). The opposite trend was observed for the other traits. GS did not predict the stability of the quality traits except for flour protein, lactic acid and softness equivalent. Significant GS accuracy for some trait stability indicated that stability was under genetic control for these traits. The magnitude of GS accuracies for all the traits and most of the trait stability index suggests the possibility of rapid selection for these trait and trait stability in wheat breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-016-2733-zDOI Listing

Publication Analysis

Top Keywords

trait stability
48
trait
16
stability
14
genomic selection
12
traits trait
12
quality traits
12
traits
9
trait values
8
values trait
8
agronomic quality
8

Similar Publications

Understanding whether risk preference represents a stable, coherent trait is central to efforts aimed at explaining, predicting and preventing risk-related behaviours. We help characterize the nature of the construct by adopting a systematic review and individual participant data meta-analytic approach to summarize the temporal stability of 358 risk preference measures (33 panels, 57 samples, 579,114 respondents). Our findings reveal noteworthy heterogeneity across and within measure categories (propensity, frequency and behaviour), domains (for example, investment, occupational and alcohol consumption) and sample characteristics (for example, age).

View Article and Find Full Text PDF

Relationship between heart rate variability traits and stroke: a Mendelian randomization study.

J Stroke Cerebrovasc Dis

January 2025

Shandong First Medical University, Jinan 250117, Shandong, China; Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 252000, Shangdong, China. Electronic address:

Background: Previous observational studies have suggested a potential association between heart rate variability (HRV) and cerebrovascular disease. However, a causal relationship between the two has not yet been established.

Aims: The objective of this study was to determine the causal relationship between heart rate variability (HRV) and stroke through a two-sample Mendelian randomization analysis.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.

View Article and Find Full Text PDF

Combined Transcriptomics and Metabolomics Uncover the Potential Mechanism of Plant Growth-Promoting Rhizobacteria on the Regrowth of After Mowing.

Int J Mol Sci

January 2025

Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China.

Mowing significantly influences nutrient cycling and stimulates metabolic adjustments in plants to promote regrowth. Plant growth-promoting rhizobacteria (PGPR) are crucial for enhancing plant growth, nutrient absorption, and stress resilience; however, whether inoculation with PGPR after mowing can enhance plant regrowth capacity further, as well as its specific regulatory mechanisms, remains unexplored. In this study, PGPR (B13) was inoculated into mowed to evaluate its effects on phenotypic traits, root nutrient contents, and hormone levels during the regrowth process and to further explore its role in the regrowth of after mowing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!