A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2016.05.039DOI Listing

Publication Analysis

Top Keywords

eahy926 cells
16
ns1619
11
respiratory chain
8
ns1619 endothelial
8
endothelial cells
8
bkca channel
8
guinea pig
8
pig hearts
8
submitochondrial particles
8
ns1619 caused
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!