Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility.

Carbohydr Polym

DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.

Published: September 2016

AI Article Synopsis

  • * Two major influences on enzymatic digestibility were found: structural changes in cellulose and the properties of the ionic liquids, such as viscosity and surface tension.
  • * The ionic liquid [C2mim][OAc] achieved a noteworthy 97.7% glucose yield, suggesting that understanding the transformation in cellulose structure could lead to optimized biomass pretreatment processes for better enzyme accessibility.

Article Abstract

In this study, five ionic liquids (ILs) have been explored for biomass pretreatment for the production of fermentable sugar. We also investigated the driving factors responsible for improved enzymatic digestibility of various ILs treated biomass along with postulating the plausible mechanism thereof. Post pretreatment, mainly two factors impacted the enzymatic digestibility (i) structural deformation (cellulose I to II) along with xylan/lignin removal and (ii) properties of ILs; wherein, K-T parameters, viscosity and surface tension had a direct influence on pretreatment. A systematic investigation of these parameters and their impact on enzymatic digestibility is drawn. [C2mim][OAc] with β-value 1.32 resulted 97.7% of glucose yield using 10 FPU/g of biomass. A closer insight into the cellulose structural transformation has prompted a plausible mechanism explaining the better digestibility. The impact of these parameters on the digestibility can pave the way to customize the process to make biomass vulnerable to enzymatic attack.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.04.129DOI Listing

Publication Analysis

Top Keywords

enzymatic digestibility
16
plausible mechanism
12
driving factors
8
digestibility
6
biomass
5
enzymatic
5
ionic liquid
4
pretreatment
4
liquid pretreatment
4
pretreatment biomass
4

Similar Publications

This study aimed to produce a novel resistant maltodextrin (RMD) from the remaining starch in cassava pulp via pyrodextrinization and enzymatic hydrolysis. The optimum conditions involved a temperature of 180 °C, 0.5 % HCl, and a reaction time of 5 h, resulting in a significant RMD yield (18.

View Article and Find Full Text PDF

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Moderately mechanically activated starch in improving protein digestibility: Application in noodles.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:

The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.

View Article and Find Full Text PDF

Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw.

Bioresour Technol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:

This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.

View Article and Find Full Text PDF

Transforming Feather Meal Into a High-Performance Feed for Broilers.

Vet Med Sci

January 2025

Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.

Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!