Background: Growing number of long noncoding RNAs (lncRNAs) are emerging as new modulators in cancer origination and progression. A lncRNA, mediator of DNA damage checkpoint protein 1antisense RNA (MDC1-AS), with unknown function, is the antisense transcript of tumor suppressor MDC1.
Method: In this study, we investigated the expression pattern and functional role of lncRNA MDC1-AS in glioma by using real time PCR and gain-/loss-of-function studies.
Result: The results showed that the expression levels of lncRNA MDC1-AS and MDC1 were significantly downregulated in glioma tissues compared with normal brain tissues, and in glioma cell lines U87MG, U251 and HEB. Overexpression of MDC1-AS resulted in significant inhibition of cell proliferation and cell cycle in U87MG and U251. We also found that MDC1-AS expression was positively correlated with MDC1 expression. In addition, the inhibitory role of MDC1-AS was remarkably diminished when MDC1 was knockdown.
Conclusion: Together, the results suggest that MDC1-AS is a novel tumor suppressor through up-regulation of its antisense tumor-suppressing gene MDC1 in glioma and leads us to propose that MDC1-AS may serve as a potential biomarker and therapeutic target for glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2016.03.002 | DOI Listing |
Biomedicines
April 2024
Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic.
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis.
View Article and Find Full Text PDFMol Cancer Res
August 2021
Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Int J Nanomedicine
March 2021
Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
Background: This study was aimed to prepare a novel magnetic thermosensitive cationic liposome drug carrier for the codelivery of Oxaliplatin (OXA) and antisense lncRNA of MDC1 (MDC1-AS) to Cervical cancer cells and evaluate the efficiency of this drug carrier and its antitumor effects on Cervical cancer.
Methods: Thermosensitive magnetic cationic liposomes were prepared using thin-film hydration method. The OXA and MDC1-AS vectors were loaded into the codelivery system, and the in vitro OXA thermosensitive release activity, efficiency of MDC1-AS regulating MDC1, in vitro cytotoxicity, and in vivo antitumor activity were determined.
EBioMedicine
January 2021
Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States. Electronic address:
Background: During early HIV-1 infection, immunodominant T cell responses to highly variable epitopes lead to the establishment of immune escape virus variants. Here we assessed a type 1-polarized monocyte-derived dendritic cell (MDC1)-based approach to selectively elicit cytotoxic T lymphocyte (CTL) responses against highly conserved and topologically important HIV-1 epitopes in HIV-1-infected individuals from the Thailand RV254/SEARCH 010 cohort who initiated antiretroviral therapy (ART) during early infection (Fiebig stages I-IV).
Methods: Autologous MDC1 were used as antigen presenting cells to induce in vitro CTL responses against HIV-1 Gag, Pol, Env, and Nef as determined by flow cytometry and ELISpot assay.
DNA Repair (Amst)
November 2020
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA. Electronic address:
The DNA damage response (DDR) is necessary to maintain genome integrity and prevent the accumulation of oncogenic mutations. Consequently, proteins involved in the DDR often serve as tumor suppressors, carrying out the crucial task of keeping DNA fidelity intact. Mediator of DNA damage checkpoint 1 (MDC1) is a scaffold protein involved in the early steps of the DDR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!