Embryonic develop-associated gene 1 (EDAG-1), a hematopoietic tissue-specific protein, is usually highly expressed in the placenta, fetal liver, bone marrow and leukemia cells, but the expression status in normal or solid tumor tissues is rarely reported. In this study, we found that EDAG-1 was up-regulated in thyroid carcinoma tissues and cells. Knockdown of EDAG-1 suppressed proliferation and enhanced cisplatin-induced apoptosis of thyroid carcinoma cells. We also demonstrated that knockdown of EDAG-1 inactivated the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway in vitro and in vivo. Moreover, knockdown of EDAG-1 suppressed tumorigenesis of thyroid carcinoma in vivo. Taken together, these results suggest that EDAG-1 regulates the proliferation and apoptosis of thyroid carcinoma via the PI3K/Akt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2016.03.052DOI Listing

Publication Analysis

Top Keywords

thyroid carcinoma
20
knockdown edag-1
12
embryonic develop-associated
8
develop-associated gene
8
edag-1 suppressed
8
apoptosis thyroid
8
pi3k/akt signaling
8
signaling pathway
8
edag-1
6
thyroid
5

Similar Publications

Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.

Methods And Materials: A total of 209 patients participated in the study.

View Article and Find Full Text PDF

This study aimed to explore the diagnostic value of the two cytology techniques, including liquid-based cytology of mammary ductal lavage fluid and nipple discharge smear cytology, in the intraductal lesions in patients with pathological nipple discharge (PND). This retrospective analysis included 119 patients with PND who underwent surgical treatment. At the same time, they all underwent fiberoptic ductoscopy (FDS), nipple discharge smear cytology and liquid-based cytology of ductal lavage fluid before surgery.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

[Hot topic: indications and contraindications for ultrasound-guided biopsy of thyroid nodules and cervical lymph nodes].

Zhonghua Nei Ke Za Zhi

February 2025

Department of Ultrasound Medicine, China-Japan Friendship Hospital, Beijing100029, China Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China National Respiratory Medicine Center, National Key Laboratory of Respiratory and Comorbidity, National Respiratory Medical Center National Clinical Research Center, Respiratory Diseases Respiratory Research Institute of Chinese Academy of Medical Sciences, Respiratory Center of China-Japan Friendship Hospital, Beijing100029, China.

View Article and Find Full Text PDF

[Thyroid secretory carcinoma: report of a case].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!