In this paper, a new systematic approach is designed to maximize the demand coverage and receiving waste load by river-reservoir systems while enhancing water quality criteria. The approach intends to control the reservoir eutrophication while developing a trade-off between the maximum receiving load and shortage on demand coverage. To simulate the system, a hybrid process-based and data-driven model is tailored. Initially, the two-dimensional hydrodynamics and water quality simulation model (CE-QUAL-W2) is linked with an effective single and/or multiple optimization algorithms (PSO) to evaluate the proposed scenarios. To increase the computational efficiencies, the simulation model is substituted with a surrogate model (ANN) in an adaptive-dynamically refined routine. The proposed method is illustrated by a case study in Iran, namely, Karkheh River Reservoir, for 180-monthly periods. The results showed the applicability of the methodology especially to solve high-dimensional multi-period complex water resource optimization problems. Also, the results demonstrated that eutrophication could be reduced under the optimal inflow phosphate control and reservoir operation, regulating the total phosphorous concentration in the reservoir.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-016-5386-0DOI Listing

Publication Analysis

Top Keywords

water quality
12
river-reservoir systems
8
receiving waste
8
waste load
8
quality criteria
8
demand coverage
8
control reservoir
8
simulation model
8
selective withdrawal
4
withdrawal optimization
4

Similar Publications

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.

View Article and Find Full Text PDF

Background/purpose: Daily flushing of dental unit waterlines is important for infection control. However, the effect of flushing on water quality management in portable dental units (PDUs) for mobile dental treatments remains unclear. In this study, we aimed to investigate the factors affecting the effectiveness of PDU flushing.

View Article and Find Full Text PDF

Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils.

View Article and Find Full Text PDF

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!