Unlabelled: The soil bacterium Cytophaga hutchinsonii actively digests crystalline cellulose by a poorly understood mechanism. Genome analyses identified nine genes predicted to encode endoglucanases with roles in this process. No predicted cellobiohydrolases, which are usually involved in the utilization of crystalline cellulose, were identified. Chromosomal deletions were performed in eight of the endoglucanase-encoding genes: cel5A, cel5B, cel5C, cel9A, cel9B, cel9C, cel9E, and cel9F Each mutant retained the ability to digest crystalline cellulose, although the deletion of cel9C caused a modest decrease in cellulose utilization. Strains with multiple deletions were constructed to identify the critical cellulases. Cells of a mutant lacking both cel5B and cel9C were completely deficient in growth on cellulose. Cell fractionation and biochemical analyses indicate that Cel5B and Cel9C are periplasmic nonprocessive endoglucanases. The requirement of periplasmic endoglucanases for cellulose utilization suggests that cellodextrins are transported across the outer membrane during this process. Bioinformatic analyses predict that Cel5A, Cel9A, Cel9B, Cel9D, and Cel9E are secreted across the outer membrane by the type IX secretion system, which has been linked to cellulose utilization. These secreted endoglucanases may perform the initial digestion within amorphous regions on the cellulose fibers, releasing oligomers that are transported into the periplasm for further digestion by Cel5B and Cel9C. The results suggest that both cell surface and periplasmic endoglucanases are required for the growth of C. hutchinsonii on cellulose and that novel cell surface proteins may solubilize and transport cellodextrins across the outer membrane.

Importance: The bacterium Cytophaga hutchinsonii digests crystalline cellulose by an unknown mechanism. It lacks processive cellobiohydrolases that are often involved in cellulose digestion. Critical cellulolytic enzymes were identified by genetic analyses. Intracellular (periplasmic) nonprocessive endoglucanases performed an important role in cellulose utilization. The results suggest a model involving partial digestion at the cell surface, solubilization and uptake of cellodextrins across the outer membrane by an unknown mechanism, and further digestion within the periplasm. The ability to sequester cellodextrins and digest them intracellularly may limit losses of soluble cellobiose to other organisms. C. hutchinsonii uses an unusual approach to digest cellulose and is a potential source of novel proteins to increase the efficiency of conversion of cellulose into soluble sugars and biofuels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984284PMC
http://dx.doi.org/10.1128/AEM.01298-16DOI Listing

Publication Analysis

Top Keywords

crystalline cellulose
20
cellulose utilization
16
cellulose
15
cytophaga hutchinsonii
12
cel5b cel9c
12
outer membrane
12
cell surface
12
endoglucanases required
8
bacterium cytophaga
8
digests crystalline
8

Similar Publications

Characteristics of naturally woven Waru bark fiber for eco-friendly composite reinforcement.

Int J Biol Macromol

January 2025

Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composite. To achieve this aim, WBF was extracted using a conventional process, ensuring purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Enhanced Cellobiose Production from Cellulose by CaCl-Phosphoric Acid Pretreatment for the Efficient Preparation of Astragalin in Recombinant .

J Agric Food Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

Cellulose, as the most abundant and cheap renewable resource in nature, is of great importance for its utilization. An enzymatic cellulose solution, mainly containing cellobiose and glucose, was utilized to produce astragalin instead of cellobiose in the recombinant strains. However, the crystalline structure of cellulose affects the production of cellobiose, resulting in a low astragalin yield.

View Article and Find Full Text PDF

Ultrasound, pulsed electric fields, and high-voltage electrical discharges assisted extraction of cellulose and lignin from walnut shells.

Int J Biol Macromol

December 2024

Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:

Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!