Microglia modulate the nervous system cellular environment and induce neuroprotective and neurotoxic effects. Various molecules are involved in these processes, including families of ion channels expressed in microglial cells, such as transient receptor potential (TRP) channels. TRP channels comprise a family of non-selective cation channels that can be activated by mechanical, thermal, and chemical stimuli, and which contribute to the regulation of intracellular calcium concentrations. TRP channels have been shown to be involved in cellular processes such as osmotic regulation, cytokine production, proliferation, activation, cell death, and oxidative stress responses. Given the significance of these processes in microglial activity, studies of TRP channels in microglia have focused on determining their roles in both neuroprotective and neurotoxic processes. TRP channel activity has been proposed to play an important function in neurodegenerative diseases, ischemia, inflammatory responses, and neuropathic pain. Modulation of TRP channel activity may thus be considered as a potential therapeutic strategy for the treatment of various diseases associated with alterations of the central nervous system (CNS). In this review, we describe the expression of different subfamilies of TRP channels in microglia, focusing on their physiological and pathophysiological roles, and consider their potential use as therapeutic targets in CNS diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-016-9632-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!