The present report describes the synthesis of a hydroxyl terminal PAMAM dendrimer (PAMAM-OH) derivative (PAMSPF). The hydroxyls of PAMAM-OH were attached to S-Methyl-l-cysteine (SMLC) via an acid-labile ester bond, named as β-thiopropionate bond, followed by modification with folic acid (FA) through a polyethylene glycol (PEG) linker. The degrees of attachment of SMLC and FA to the PAMAM-OH backbone were 83.9% and 12.8%, respectively. PAMSPF could condense DNA to form spherical nanoparticles with particle sizes of ∼200nm and remain stable in the presence of heparin and nuclease. The β-thiopropionate bond in PAMSPF was hydrolyzed completely and the DNA release rate was 95.8±3.3% after incubation under mildly acidic conditions at 37°C for 3h. PAMSPF/DNA was less cytotoxic to KB and HepG2 cells and exhibited a higher gene transfection efficiency than native PAMAM/DNA. The uptake assays showed that PAMSPF/DNA entered KB cells within 0.5h through folate receptor-mediated endocytosis and escaped from endosomes within 2h. In addition, PAMSPF/DNA displayed long circulation time along with excellent targeting of tumor sites in vivo. These findings demonstrate that PAMSPF is an excellent carrier for safe and effective gene delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.05.060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!