Hexokinase 2 (HK2) is a rate-determining enzyme in aerobic glycolysis, a process upregulated in tumor cells. HK2 expression is controlled by various transcription factors and epigenetic alterations and is heterogeneous in hepatocellular carcinomas (HCCs), though the cause of this heterogeneity is not known. DNA methylation in the HK2 promoter CpG island (HK2-CGI) and its surrounding regions (shore and shelf) has not previously been evaluated, but may provide clues about the regulation of HK2 expression. Here, we compared HK2 promoter methylation in HCCs and adjacent non-cancerous liver tissues using a HumanMethylation450 BeadChip array. We found that, while the HK2-CGI N-shore was hypomethylated, thereby enhancing HK2 expression, the HK2-CGI was itself hypermethylated in some HCCs. This hypermethylation suppressed HK2 expression by inhibiting interactions between HIF-1α and a hypoxia response element (HRE) located at -234/-230. HCCs that were HK2negative and had distinct promoter CGI methylation were denoted as having a HK2-CGI methylation phenotype (HK2-CIMP), which was associated with poor clinical outcome. These findings indicate that HK2-CGI N-shore hypomethylation and HK2-CGI hypermethylation affect HK2 expression by influencing the interaction between HIF 1α and HRE. HK2-CGI hypermethylation induces HK2-CIMP and could represent a prognostic biomarker for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173097PMC
http://dx.doi.org/10.18632/oncotarget.9723DOI Listing

Publication Analysis

Top Keywords

hk2 expression
24
hk2 promoter
12
hk2
9
regulation hk2
8
methylation hk2
8
hk2-cgi n-shore
8
hk2-cgi hypermethylation
8
hk2-cgi
7
expression
6
methylation
5

Similar Publications

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2.

View Article and Find Full Text PDF

Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.

Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.

Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.

View Article and Find Full Text PDF

Renal fibrosis is the most important feature of the progression of chronic kidney disease (CKD), and epithelial-mesenchymal transition (EMT) plays an important role in renal fibrosis. Dedicator of cytokinesis protein 2 (Dock2) is involved in the immune system and the development of a variety of fibrotic diseases. However, its specific role in renal fibrosis remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!