RNF187 is Downregulated Following NF-κB Inhibition in Late Erythroblasts.

Biochem Genet

School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia.

Published: October 2016

Beta (β)-thalassaemic erythroblasts grown in vitro have reduced nuclear factor kappa B (NF-κB) pathway gene expression. By inhibiting this pathway in erythroblasts from normal individuals, important downstream genes affected by this inhibition can be identified. Bay 11-7082 is a potent inhibitor of the NF-κB pathway, it acts irreversibly, inhibiting NF-κB activation by blocking tumor necrosis factor alpha (TNF-α)-induced phosphorylation of the inhibitory IκB subunit thereby preventing NF-κB activation. In this study, hematopoietic stem cells were isolated from the peripheral blood of 6 healthy individuals and were then cultured for 14 days in conditions which promote erythroid differentiation. Following erythroid lineage enrichment, these cells were stimulated with TNFα or inhibited with Bay 11-7082. Subsequent RNA isolation and gene expression analyses were performed using pooled cDNA with custom PCR arrays. Genes of interest were examined individually on non-pooled samples. Our data identified RNF187, a RING finger domain gene as being downregulated in response to NF-κB inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-016-9750-0DOI Listing

Publication Analysis

Top Keywords

nf-κb inhibition
8
nf-κb pathway
8
gene expression
8
bay 11-7082
8
nf-κb activation
8
nf-κb
6
rnf187 downregulated
4
downregulated nf-κb
4
inhibition late
4
late erythroblasts
4

Similar Publications

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Background: Liver fibrosis is a complex reparative process in response to chronic liver injuries, with limited effective therapeutic options available in clinical practice. During liver fibrosis, liver sinusoidal endothelial cells (LSECs) undergo phenotypic changes and also play a role in modulating cellular communications. Si-Wu-Tang (SWT), a traditional Chinese herbal remedy, has been extensively studied for its effectiveness in treating hematological, gynecological and hepatic diseases.

View Article and Find Full Text PDF

Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis.

Chin Med

December 2024

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.

Background: Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!