Reg family proteins have long been implicated in islet β-cell proliferation, survival, and regeneration. In our previous study, we reported that Reg3β overexpression did not increase islet growth but prevented streptozotocin-induced islet damage by inducing specific genes. In order to explore its role in type 2 diabetes (T2D), we established high-fat diet (HFD)-induced obesity and diabetes in RIP-I/Reg3β mice. Glucose and insulin tolerance tests, immunofluorescence for insulin, eIF2α, and GLUT2 in islets, Western blots on phosphorylated AMPKα and hepatic histology were performed. Both RIP-I/Reg3β and wild-type mice gained weight rapidly and became hyperglycemic after 10 weeks on the HFD. However, the transgenic mice exhibited more significant acceleration in blood glucose levels, further deterioration of glucose intolerance and insulin resistance, and a lower intensity of insulin staining. Immunofluorescence revealed similar magnitude of islet compensation to a wild-type HFD. The normal GLUT2 distribution in the transgenic β-cells was disrupted and the staining was obviously diminished on the cell membrane. HFD feeding also caused a further decrease in the level of AMPKα phosphorylation in the transgenic islets. Our results suggest that unlike its protective effect against T1D, overexpressed Reg3β was unable to protect the β-cells against HFD-induced damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12020-016-0998-2 | DOI Listing |
Front Immunol
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Post-stroke early activation of neutrophils contributes to intensive neuroinflammation and worsens disease outcomes. Other pre-existing patient conditions can modify the extent of their activation during disease, especially hypercholesterolemia. However, whether and how increased circulating cholesterol amounts can change neutrophil activation responses very early after stroke has not been studied.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Electronic address:
A maternal high-fat diet (HFD) deteriorates the long-term metabolic health of offspring. Circadian rhythms are crucial for regulating metabolism. However, the impact of maternal HFD on the circadian clock in white adipose tissue (WAT) remains unexplored.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11651, Cairo, Egypt.
The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!