Background: Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer's disease (AD).
Objective: To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis.
Methods: Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models.
Results: Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. 'Low binding' tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay.
Conclusion: The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, 'low binding' recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and 'low-binding tubes' into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981898 | PMC |
http://dx.doi.org/10.3233/JAD-160286 | DOI Listing |
Int J Dev Neurosci
October 1988
Department of Psychiatry and Behavioral Sciences, University of Texas Medical Branch, Galveston 77550.
The specific activities of two forms of aryl acylamidase (AAA) were examined in 7 regions of the developing rat brain, plus the remainder of the brain and the whole brain. AAA-1 activity peaked at 15 days old in all brain regions studied except the whole brain where it peaked at 22 days of age. AAA-2 activity peaked between 15 and 29 days old in most brain regions studied except corpus striatum and hippocampus where the AAA-2 activity peaked before 15 days old.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!