AI Article Synopsis

  • The study investigates amyloid-β (Aβ) isoforms in two common transgenic mouse models of Alzheimer's disease, APPswe/PS1dE9 and Tg2576, highlighting their usefulness in researching disease mechanisms.
  • Two chromatographic methods were developed to analyze Aβ species from the brains of these mice, revealing that the Tg2576 model had 10 Aβ species, all of human origin, while the APP/PS1 model had 39 species from both human and murine origins.
  • This research is significant as it identifies a notable phenotypic difference between the two models, with a previously unreported high number of Aβ species found in the APP/PS1 transgenic mouse.

Article Abstract

APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer's disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981901PMC
http://dx.doi.org/10.3233/JAD-160280DOI Listing

Publication Analysis

Top Keywords

transgenic mouse
20
mouse models
16
aβ species
12
mouse
8
models alzheimer's
8
alzheimer's disease
8
human origin
8
origin detected
8
detected brain
8
tg2576 mouse
8

Similar Publications

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Anti-Estrogen Therapy Achieves Complete Remission and Stability in Recurrent Cervical Cancer: A Case Study.

Am J Case Rep

January 2025

Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

BACKGROUND Studies using transgenic mouse models have demonstrated that estrogen is necessary for the development of cervical cancer, particularly in tissues responsive to estrogen. Estrogen also protects cervical cancer cells from apoptosis, suggesting its role in the survival and persistence of cancer cells. CASE REPORT An 84-year-old woman with diabetes mellitus, hypertension, and stage III chronic renal failure was diagnosed with cervical squamous cell carcinoma, FIGO stage IB2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!