Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication and repair by interacting with a large number of proteins involved in these processes. Two amino acid substitutions in PCNA, both located at the subunit interface, have previously been shown to block translesion synthesis (TLS), a pathway for bypassing DNA damage during replication. To better understand the role of the subunit interface in TLS, we used random mutagenesis to generate a set of 33 PCNA mutants with substitutions at the subunit interface. We assayed the full set of mutants for viability and sensitivity to ultraviolet (UV) radiation. We then selected a subset of 17 mutants and measured their rates of cell growth, spontaneous mutagenesis, and UV-induced mutagenesis. All except three of these 17 mutants were partially or completely defective in induced mutagenesis, which indicates a partial or complete loss of TLS. These results demonstrate that the integrity of the subunit interface of PCNA is essential for efficient TLS and that even conservative substitutions have the potential to disrupt this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892588PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157023PLOS

Publication Analysis

Top Keywords

subunit interface
20
interface block
8
block translesion
8
translesion synthesis
8
pcna
5
subunit
5
interface
5
identification mutations
4
mutations pcna
4
pcna subunit
4

Similar Publications

Discovery of PRMT5 N-Terminal TIM Barrel Ligands from Machine-Learning-Based Virtual Screening.

ACS Omega

January 2025

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.

Protein arginine methyltransferase 5 (PRMT5), which symmetrically dimethylates cytosolic and nuclear proteins, has been demonstrated as an important cancer therapeutic target. In recent years, many advanced achievements in PRMT5 inhibitor development have been made. Most PRMT5 inhibitors in the clinical trial focus on targeting the C-terminal catalytic domain, whereas developing small molecules to interrupt the PRMT5/pICLn (methylosome subunit) protein-protein interface is also of great importance for inhibiting PRMT5.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!