The development of resistance is the major cause of mortality in cancer. Combination chemotherapy is used clinically to reduce the probability of evolution of resistance. A similar trend toward the use of combinations of drugs is also emerging in the application of cancer nanomedicine. However, should a combination of two drugs be delivered from a single nanoparticle or should they be delivered in two different nanoparticles for maximal efficacy? We explored these questions in the context of adaptive resistance, which emerges as a phenotypic response of cancer cells to chemotherapy. We studied the phenotypic dynamics of breast cancer cells under cytotoxic chemotherapeutic stress and analyzed the data using a phenomenological mathematical model. We demonstrate that cancer cells can develop adaptive resistance by entering into a predetermined transitional trajectory that leads to phenocopies of inherently chemoresistant cancer cells. Disrupting this deterministic program requires a unique combination of inhibitors and cytotoxic agents. Using two such combinations, we demonstrate that a 2-in-1 nanomedicine can induce greater antitumor efficacy by ensuring that the origins of adaptive resistance are terminated by deterministic spatially constrained delivery of both drugs to the target cells. In contrast, a combination of free-form drugs or two nanoparticles, each carrying a single payload, is less effective, arising from a stochastic distribution to cells. These findings suggest that 2-in-1 nanomedicines could emerge as an important strategy for targeting adaptive resistance, resulting in increased antitumor efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b00320DOI Listing

Publication Analysis

Top Keywords

adaptive resistance
20
cancer cells
16
antitumor efficacy
8
resistance
7
cancer
7
cells
6
adaptive
5
rationally designed
4
designed 2-in-1
4
2-in-1 nanoparticles
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

The process of regional economic development is marked by a sustained exposure to external disturbances. In today's unpredictable and tumultuous global environment, such disturbances have become increasingly common, underlining the need to advance a region's economic resilience and foster adaptive mechanisms to handle environmental flux. Comparing the typical provinces in eastern, central, western and northeastern regions during the COVID-19 epidemic period, it found that the economic resilience performance of Henan Province, which is a representative of the central region, has the following characteristics.

View Article and Find Full Text PDF

This study explores the integration of sexual and reproductive health (SRH) education in Sri Lanka, utilizing the Health Belief Model (HBM) to predict the perceived quality of SRH education among non-state undergraduate students. In many Asian countries, including Sri Lanka, cultural resistance and skepticism often challenge SRH education initiatives. The research is based on a questionnaire survey, examining factors influencing the perceived quality of SRH education, such as cultural norms, embarrassment, attitudes, awareness, and institutional support.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.

Virulence

December 2025

Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.

is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!