The development of new treatments for intractable retinal diseases requires reliable functional assessment tools for animal models. In vivo measurements of neural activity within visual pathways, including electroretinogram (ERG) and visually evoked potential (VEP) recordings, are commonly used for such purposes. In mice, the ERG and VEPs are usually recorded under general anesthesia, a state that may alter sensory transduction and neurotransmission, but seldom in awake freely moving mice. Therefore, it remains unknown whether the electrophysiological assessment of anesthetized mice accurately reflects the physiological function of the visual pathway. Herein, we describe a novel method to record the ERG and VEPs simultaneously in freely moving mice by immobilizing the head using a custom-built restraining device and placing a rotatable cylinder underneath to allow free running or walking during recording. Injection of the commonly used anesthetic mixture xylazine plus ketamine increased and delayed ERG oscillatory potentials by an average of 67.5% and 36.3%, respectively, compared to unanesthetized mice, while having minimal effects on the a-wave and b-wave. Similarly, components of the VEP were enhanced and delayed by up to 300.2% and 39.3%, respectively, in anesthetized mice. Our method for electrophysiological recording in conscious mice is a sensitive and robust means to assess visual function. It uses a conventional electrophysiological recording system and a simple platform that can be built in any laboratory at low cost. Measurements using this method provide objective indices of mouse visual function with high precision and stability, unaffected by anesthetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892628 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156927 | PLOS |
Nat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFLab Anim
January 2025
Laboratory of Experimental Animals (LAE), Faculty of Veterinary Science, National University of La Plata, Argentina.
Extending an existing animal facility is a challenging process that requires consideration of both engineering and biological aspects. In this sense, integration with ongoing activities must not alter the animals' microbiological condition or welfare, as they usually remain in the facility while these activities occur. The objective of this work was to describe and evaluate the practical biosafety considerations during the enlargement of a specific pathogen-free (SPF) rodent facility.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Course of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan. Electronic address:
There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood.
View Article and Find Full Text PDFUnlabelled: The integration of olfactory and spatial information is critical for guiding animal behavior. The lateral entorhinal cortex (LEC) is reciprocally interconnected with cortical areas for olfaction and the hippocampus and thus ideally positioned to encode odor-place associations. Here, we used mini-endoscopes to record neural activity in the mouse piriform cortex (PCx) and LEC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!