OBJECTIVE Complications of laser interstitial thermal therapy (LITT) are underreported. The authors discuss how they have modified their technique in the context of technical and treatment-related adverse events. METHODS The Medtronic Visualase system was used in 49 procedures in 46 patients. Between 1 and 3 cooling catheters/laser fiber assemblies were placed, for a total of 62 implanted devices. Devices were placed using frameless stereotaxy (n = 3), frameless stereotaxy with intraoperative MRI (iMRI) (n = 9), iMRI under direct vision (n = 2), MRI alone (n = 1), or frame-based (n = 47) techniques. LITT was performed while monitoring MRI thermometry. Indications included brain tumors (n = 12), radiation necrosis (n = 2), filum terminale ependymoma (n = 1), mesial temporal lobe epilepsy (n = 21), corpus callosotomy for bifrontal epilepsy (n = 3), cavernoma (n = 1), and hypothalamic hamartomas (n = 6). RESULTS Some form of adverse event occurred in 11 (22.4%) of 49 procedures. These included 4 catheter malpositions, 3 intracranial hemorrhages, 3 cases of neurological deficit related to thermal injury, and 1 technical malfunction resulting in an aborted procedure. Of these, direct thermal injury was the only cause of prolonged neurological morbidity and occurred in 3 of 49 procedures. Use of frameless stereotaxy and increased numbers of devices were associated with significantly increased complication rates (p < 0.05). A number of procedural modifications were made to avoid complications, including the use of 1) frame-based catheter placement, a 1.8-mm alignment rod to create a track and titanium skull anchors for long trajectories to improve accuracy; 2) a narrow-gauge instrument for dural puncture and coregistration of contrast MRI with CT angiography to reduce intracranial hemorrhage; 3) general endotracheal anesthesia for posterior-placed skull anchors to reduce the likelihood of damage to the cooling catheter; 4) use of as few probes as possible to reduce complications overall; and 5) dose modification of thermal treatment and use of short (3-mm) diffusing tips to limit treatment when structures to be spared do not have intervening CSF spaces to act as heat sinks. CONCLUSIONS Laser ablation treatment may be used for a variety of neurosurgical procedures for patients with tumors and epilepsy. While catheter placement and thermal treatment may be associated with a range of suboptimal operative and postoperative courses, permanent neurological morbidity is less common. The authors' institutional experience illustrates a number of measures that may be taken to improve outcomes using this important new tool in the neurosurgical arsenal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2016.3.JNS152147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!