Effects of emopamil on postischemic blood flow and neuronal damage in rat brain.

Naunyn Schmiedebergs Arch Pharmacol

Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie und Lebensmittelchemie der Philipps Universität, Marburg, Federal Republic of Germany.

Published: July 1989

The effects of the calcium entry blocker emopamil on physiological variables, local cerebral blood flow (LCBF) and on hippocampal cell damage were evaluated after 10 min of forebrain ischemia in the rat. LCBF was determined with the 14C-iodoantipyrine technique after 2, 10, and 60 min of postischemic recirculation. Histological evaluation was performed 7 days after ischemia in cortical and hippocampal tissue by determination of the percentage of necrotic neurons. Preischemic application of emopamil [4 mg/kg racemate or 2 mg/kg (S)-emopamil; i.v.] caused increased in LCBF in cortical areas but did not alter blood flow in the hippocampus at 2 min of recirculation. After 10 and 30 min of flow resumption no differences in LCBF between drug-treated and control animals were observed. In the histological series (S)-emopamil was applied at doses of 2, 4 or 6 mg/kg before the induction of ischemia. After 7 days of postischemic recovery, neuronal damage was significantly reduced by the calcium antagonist in hippocampal CA1 sector at all doses tested, the most prominent effects being observed with the lowest dose. At this dose cell loss in the CA3 sector was also reduced. In cortical tissue the number of necrotic cells remained unchanged by emopamil treatment. It is concluded that the calcium antagonist emopamil can reduce ischemia-induced neuronal cell damage. The compound improves circulation in cortical tissue only during early recovery but not at later phases of reflow, i.e. the period of delayed hypoperfusion. These increases in blood flow are not of crucial importance for ultimate neuronal death in this area.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00165148DOI Listing

Publication Analysis

Top Keywords

blood flow
16
neuronal damage
8
cell damage
8
calcium antagonist
8
cortical tissue
8
flow
5
effects emopamil
4
emopamil postischemic
4
blood
4
postischemic blood
4

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Background: Direct carotid-cavernous fistulas (CCFs) are relatively rare but dangerous complications of penetrating traumatic brain injury or maxillofacial trauma. A variety of clinical signs have been described, including ophthalmological and neurological ones. In some cases, severely altered cerebral blood flow can present as massive life-threatening bleeding through the nose, subarachnoid hemorrhage, and/or intraparenchymal hemorrhage.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!