Optimal electrode design: Straight versus perimodiolar.

Eur Ann Otorhinolaryngol Head Neck Dis

The Wilmslow Hospital, Wilmslow, United Kingdom.

Published: June 2016

The electrode in a cochlear implant (CI) system is a key factor in hearing performance as it is the interface between the device and the auditory pathway of the recipient. The first CI electrodes were straight and thus adopted a lateral wall position. Subsequent innovations include: perimodiolar electrodes designed to lie adjacent to the modiolar wall and thus to provide more spatially-focused stimulation of the spiral ganglion cells; shorter atraumatic straight electrodes for combined electric and acoustic (hybrid) stimulation. This paper explores the relative merits of straight and perimodiolar electrodes in the search for the optimal electrode design with reference to electrodes from Cochlear(®).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anorl.2016.04.014DOI Listing

Publication Analysis

Top Keywords

optimal electrode
8
electrode design
8
perimodiolar electrodes
8
electrodes
5
straight
4
design straight
4
straight versus
4
versus perimodiolar
4
perimodiolar electrode
4
electrode cochlear
4

Similar Publications

Multilayer Composite Electrodes for Simultaneously Improved Mechanical and Electrochemical Performance.

ACS Appl Mater Interfaces

January 2025

The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Structural batteries offer a transformative approach to integrate energy storage directly into the frameworks of electric vehicles and aircrafts, enabling multifunctional construction. This study presents a nacre-inspired multilayer composite electrode fabricated via the cold sintering process (CSP), achieving a balance of enhanced electrochemical performance and mechanical robustness. The composite electrode combines active electrode materials with a ductile conducting polymer-carbon-mixture phase in a layered architecture.

View Article and Find Full Text PDF
Article Synopsis
  • Laser-structuring techniques, particularly Direct Laser Interference Patterning, can significantly enhance the performance of pure Ni electrodes in water electrolysis by optimizing their structure.
  • A study revealed that the spatial distance between laser-structures is critical for improving electrode performance, resulting in an increase in the electrochemically active surface area by up to 12 times compared to nonstructured electrodes.
  • Optimal structuring leads to lower onset potential and overpotential during the oxygen evolution reaction due to the superhydrophilic surface, which enhances bubble growth dynamics and minimizes electrode resistance.
View Article and Find Full Text PDF

Multiple gRNAs-assisted CRISPR/Cas12a-based portable aptasensor enabling glucometer readout for amplification-free and quantitative detection of malathion.

Anal Chim Acta

March 2025

College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, Leshan, Sichuan, 614000, PR China. Electronic address:

Background: The threat of toxic malathion residues to human health has always been a serious food safety issue. The CRISPR/Cas system represents an innovative detection technology for pesticide residues, but its application to malathion detection has not been reported yet. In addition, the multiple-guide RNA (gRNA) powered-CRISPR/Cas biosensor has the advantages of being fast, sensitive and does not require pre-amplification.

View Article and Find Full Text PDF

Exploring wood-derived biochar potential for electrochemical sensing of fungicides mancozeb and maneb in environmental water samples.

Talanta

January 2025

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000, Novi Sad, Serbia.

The sustainable material, biochar (BC) from a hardwood source, was synthesized via pyrolysis process at 400 °C (BC400) and 700 °C (BC700) and used as a modifier during the electrochemical sensor design. The prepared BCs were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and elemental analysis (CHNS). The development of rapid analytical techniques for detecting pesticides employing a low-cost carbon paste electrode (CPE) modified with BC is a novel strategy to provide a sensitive response to water pollution.

View Article and Find Full Text PDF

General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:

The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!