The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania-chitosan-chondroitin 4-sulphate nanocomposites of three different concentrations (2:1:x, where x- 0.125, 0.25, 0.5) have been synthesised by in situ sol-gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30-50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG-63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676111PMC
http://dx.doi.org/10.1049/iet-nbt.2015.0023DOI Listing

Publication Analysis

Top Keywords

bone implant
12
implant applications
12
4-sulphate nanocomposites
8
possess high
8
cell viability
8
nanocomposites
6
situ synthesised
4
synthesised tio2-chitosan-chondroitin
4
tio2-chitosan-chondroitin 4-sulphate
4
nanocomposites bone
4

Similar Publications

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Comparative Analysis of Gelatin/Polylactic Acid and Commercial PLA Membranes for Guided Bone Regeneration: A Randomized Clinical Trial.

Med Sci Monit

January 2025

Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.

BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).

View Article and Find Full Text PDF

Adequate intraoperative visualization is mandatory for implant application in pelvic ring injuries. Several fluoroscopic X-ray views are in practical use. The gold standard primary X-ray is the anteroposterior view of the pelvis.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!